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Abstract

Why have some nonviolent revolutions succeeded even with modest participation numbers,
while others have failed despite massive mobilization? We develop an agent-based model
that predicts the outcomes of three well-known activism strategies. The first rapidly recruits
a wide number of activists, which overwhelms the opponent’s support network and encour-
ages large-scale defections. In the second, activists who have already mobilized remain
committed to success and inspire other civilians to protest even when they are unable to pro-
test themselves. In the third strategy, campaigns focus their energy and influence directly
on the regime’s pillars of support. We find that this third strategy outperforms the others in
generating defections, even when the size of the campaign is small. When activists have
information about pillars’ levels of loyalty to the regime, they can target persuasion on the pil-
lars most likely to defect. Importantly, for small or medium-sized movements, the strategy of
focusing on pillars—especially the least loyal pillars—is more likely to yield success than
relying on rapid mobilization and numerical advantage alone.

Introduction

Prior research on people power revolutions has found that participation size is a powerful cor-
relate of campaign success. Numerous studies argue that when people rise up in large numbers
against their governments, movements are more likely to win [1-4]. Moreover, movement
momentum—increasing numbers of events in quick succession—can help smaller campaigns
influence large-scale political outcomes [5]. Such studies speculate that movement momentum
is particularly impactful because it increases pressure on security forces to defect from the gov-
ernment [6]. For instance, in Sudan, a revolutionary movement in 2019 rapidly mobilized
mass demonstrations, sit-ins, and strikes to force the ouster of dictator Omar al-Bashir, who
was deposed by his own military. Defection of key political and societal pillars away from the
power-holder is a key mechanism through which mass movements achieve change [1]. Move-
ments often use a variety of tactics to induce defections, including protests, strikes, boycotts,
and other forms of public pressure [6, 7]. Such tactics can put direct pressure on pillars to stop
cooperating with the authorities, and often involve making public or private personal appeals,
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creating financial pressure on businesses by organizing labor actions, consumer boycotts, or
raising awareness among shareholders and employees, or appealing to shared norms such as
patriotism, professionalism, duty, family obligation, gender norms, religious principles, and
other moral codes to induce defections.

The emphasis on movement size and protest momentum alone as the pathways for achiev-
ing elite network defections has two limitations. First, cross-national observational data sug-
gest that campaign size is a more unreliable predictor of success than previously understood,
particularly in contemporary mass movements [8]. Many campaigns fail despite achieving
large-scale participation during peak events. In Bahrain in 2011, for example, a popular upris-
ing mobilized up to 7 percent of the population against the ruling monarchy, but the move-
ment was still defeated [9]. In Iraq, over 1 million people—over 8 percent of the population—
reportedly protested to topple Saddam Hussein after his military’s withdrawal from Kuwait in
1991, yet this campaign also did not achieve its demands. Conversely, some campaigns have
succeeded with a relatively modest proportion of popular mobilization, such as Mongolia’s
1989-1990 pro-democracy movement, which mobilized less than 1 percent of the population
and yet succeeded.

Second, existing observational research does not account for whether campaigns adopt par-
ticular strategies that link mass mobilization to defections. We also lack systematic evidence
on the comparative advantages of adopting such strategies, compared to mass mobilization
alone. Instead, popular discourse about such movements implies that mass mobilization is
often spontaneous and leaderless, and that large-scale mobilization often occurs without an
organized strategy to influence or weaken the opponent’s pillars of support. An alternative per-
spective common in sociological studies, is that organizational features, resource mobilization,
and strategic choices are all paramount [10]. Yet we are not aware of many studies that use
computational modeling to systematically evaluate the ultimate outcomes of different strate-
gies of nonviolent mass movements.

This article seeks to address these two issues with a computational model that varies partici-
pation thresholds, as well as the strategies used by activists to influence the balance of political
power. The scope of our study builds upon and extends existing computational models that
address thresholds for revolutionary success but focus on armed revolutions. The parameters
for successful revolution in these models are neither practical nor desirable because they involve
killing a vast number of the movement’s opponents [11, 12]. While such models have yielded
important insights regarding the dynamics of violent revolution, far more mass revolutionary
movements in the contemporary era—including the 2010-2011 Arab Spring uprisings in Tuni-
sia, Egypt, Bahrain, and Yemen—have relied primarily on unarmed, nonviolent mobilization
rather than on armed insurrection or guerrilla warfare, even when they faced brutally violent
regimes [13]. Consequently, model parameters that require the killing or armed capture of state
opponents and security forces have less relevance to contemporary revolutions than parameters
that require nonviolent defections by pillars of support within the opponent regime.

We present a computational model focused on the empirical phenomenon of nonviolent
resistance over the past five decades, validated against all 110 mass nonviolent mobilizations
from 1945-2014 that aimed to overthrow incumbent national governments. In doing so, we
draw on a promising trend of using historical data to calibrate the model’s parameters [14-16].
The model accounts for and compares strategies focused on influencing the target regime’s pil-
lars of support, as well as the rapid mobilization of fellow civilians and activists. Although our
model does not directly account for potential strategies the regime might use to prevent defec-
tions—an issue we address in the conclusion—our results do suggest that strategies that close
the social distance between activists and the regime’s pillars of support lead to a higher chance
of success than relying on mass mobilization alone.
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Taken together, these observations indicate the importance of accurate information about
the opposition, focused disruptions among the opponent’s pillars of support, rapid mobiliza-
tion of civilian participants, and a sustainable activist base for generating movement success.
These findings shed light on why some nonviolent resistance campaigns succeed even though
they are relatively small in size, whereas others fail despite large-scale mass mobilization.

Study design and data

An agent-based model enables us to look at change over time in individual and categorical (i.e.
group-level) behavior according to different sets of rules (parameters) that reflect observed fea-
tures of nonviolent collective action. Agent-based modeling gives us a dynamic view of mobili-
zation patterns and threshold effects. To engage with existing work modeling violent
resistance, we adapt and expand Alessandro Moro’s agent-based model of violent revolution
to incorporate distinctive features of nonviolent uprisings [12]. Moro refers to his primary
agents as “citizens,” which we have modified to “civilians” in our study. Our model also intro-
duces two new types of agents. Rather than revolutionaries who are committed to violent resis-
tance, we include revolutionary activists who are committed to nonviolent resistance. Second,
we add agents representing the regime’s pillars of support—powerful political, economic, or
social elites upon whose cooperation the regime depends to maintain its grip on power. A new
rule allowed these pillars and the security force agents to defect.

Our model therefore includes four types of agents typically found in contentious politics:

« Civilians: These make up the majority of the agents; they can decide to remain inactive or
choose to join the resistance. If they do, we call them “nonviolent civilians.” Once they’ve
joined, they enter a cycle of time alternating between protesting and being dormant.
Depending on model parameters, they can also leave the resistance and cease protesting alto-
gether (mimicking real-world burnout or fatigue dynamics).

o Activists: These agents are committed to nonviolent resistance in all circumstances. Like
nonviolent civilians, they go through cycles of active protest and dormancy.

« Pillars: These agents represent the political, social, and economic pillars of society, whose
power supports the regime. Their allegiance is necessary to maintain the status quo.

o Police: These are the security forces, representing army or police personnel. They arrest or
kill civilians and activists, but they can also defect and stop repressing activists and nonvio-
lent civilians.

Following from similar work [11, 12], the model places agents on a 40x40 torus lattice (i.e. a
grid in which the left edge connects with the right edge and the top connects with the bottom).
All rules relate to an agent and their neighborhood. The neighborhood is a circle around the
agent defined by a vision parameter of 4, meaning an agent can see any agents within a radius
of four spaces around them. Fig 1 shows the lattice at a late time step in a modeling sequence
simulating a large nonviolent resistance.

As mentioned above, only activists and nonviolent civilians can protest. However, civilians
may have protested in a previous turn. Hence, green circles with black boundaries are civilians
who started their turn by protesting (e.g. becoming “nonviolent civilians,”) but then left the
resistance, ceasing to be nonviolent civilians.

While the lattice primarily represents agents in physical distances, it also pertains symboli-
cally to social distances. A key idea fundamental to this model (and to agent-based modeling
in general) is that agents or people do not necessarily respond to information about the entire
society, but they respond to what they “see” and experience firsthand. For instance, if a person
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Fig 1. Example of resistance movement at an advanced timestep.
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hears that 0.1% of the population is protesting somewhere in their nation, it does not affect
them as much as encountering nearly everyone around them protest, even though the only dif-
ference is their physical proximity to that 0.1%.

Rules

The following rules explain how the agents function.

Rule C: Civilians join the nonviolent resistance. The foundational action in the model is
the mobilization of individual civilian agents, who can remain inactive or can join the nonvio-
lent resistance (i.e. become nonviolent civilians). Epstein (2002) and Moro (2016) used the fol-
lowing rule to determine when a civilian becomes active in armed rebellion:

Grievance — Cost > a fixed threshold

G-C>f

However, it is clear from scholarship on the determinants of protest participation that social
connections and protest options influence individuals’ decisions about whether to participate
in mass uprisings, through both peer pressure and information cascades [17-19]. Thus, our
model attempts to explicitly account for the role of social connections and information about
protest opportunities in shaping civilians’ motivation to join the resistance [20-24]. Conse-
quently, we include a peer pressure term as short-hand for these twin effects. Civilians join the
resistance when:

( Grievance  Peer Pressure ) > ( fixed threshold + Cost)

(GxP)>(f+C)

PLOS ONE | https://doi.org/10.1371/journal.pone.0269976  July 27, 2022 4/19


https://doi.org/10.1371/journal.pone.0269976.g001
https://doi.org/10.1371/journal.pone.0269976

PLOS ONE

A dynamic model of nonviolent resistance strategy

Grievance is a value between 0 and 1, which is calculated as a function of individual hard-
ship experienced by the agent and a dynamic value of government legitimacy. The calculation
of hardship is based on a uniquely assigned income level for each agent. Modeled with an
inverse logit function of the expected income in the population minus the agent’s income, the
agent’s hardship ranges between 1 to 0 and decreases with higher income. This calculation is
unchanged from Moro’s model [12]. Government legitimacy is a global variable. While Moro
used a fixed value for government legitimacy, our model uses a starting value that can be
decreased based on the actions of the policemen, which will be described below.

Grievance = Hardship = (1 — Government Legitimacy)

G=H=x (1 - GL)

In future variations of the model, each agent could have a different perceived government
legitimacy based on what they currently experience, what they have experienced from the
beginning of the simulation, and/or whether information spreads across social connections.

The Peer Pressure term is also a value between 0 and 1, and it is a function of the number of
agents actively protesting in a civilian’s neighborhood. It is defined as:

0.5

Peer Pressure Term = * Number of Protesting Agents in Neighborhood
Peer Pressure Number

0.5
=——xn
PPN 7

When the right side of the equation is larger than 1, the Peer Pressure term is set to 1.
While the peer pressure term measures how much peer pressure the agent experiences, the
PPN is a simulation variable set such that a larger PPN requires more protesting neighbors in
order for the agent to feel the same amount of pressure.

Modified from Moro [12], the cost of rebelling is calculated as

Probability of Arrest * Risk Aversion

(A * R)

The probability of arrest is a function of the number of policemen and protestors in the
agent’s neighborhood. Using the agent types in our model:

no
A=1-exp(—wx—L—)

1+ n,

This forces A to be between 0 and 1. The variables n,,, and n,,, are the number of policemen
and protestors in the agent’s neighborhood. The variable w is set at 2.3 for the rule such that
the probability of arrest is 0.9, i.e. 90% when only one policeman and the agent considering
resisting are in the agent’s neighborhood.

Moro [12] assigned each agent a risk aversion based on their income level and the parame-
ter determining maximum jail sentence, assuming that a wealthier individual would not risk
their loss of income. We included this term, but also added an additional term in which the
very poor also would not risk losing their income, which is consistent with research finding a
nonmonotonic association between wealth and protest participation [25, 26].

The fixed threshold, f, is a model parameter adjusted to match model results with historical
data as described below [27]. The range of values explored were slightly larger than 0, which
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means that Grievance * Peer Pressure needs to be slightly larger than Cost, and the value
selected that best matched historical data was 0.0706. Values much larger or smaller resulted in
too few or too many joining the resistance, respectively.

As noted above, Rule C is based on each agent seeing activists and nonviolent civilians protest-
ing in their neighborhood. Only a proportion of new protesters remain highly committed, whereas
others leave the resistance when they do not see others protesting. We therefore introduced a
model parameter called Percent Committed, which determines what percentage of the agents join
the resistance but quickly leave it as soon as protest in their neighborhood stops. In other words,
the committed nonviolent civilians will join the resistance based on Rule C and remain active
until they are arrested, killed, or the simulation ends. Fickle nonviolent civilians will join the resis-
tance but leave it as soon as they do not see others participating in their neighborhoods.

Rule NV: Nonviolent civilians and activists protest. In Moro’s model [12], revolutionar-
ies try to kill policemen. This rule was modified for our model in which activists and nonvio-
lent civilians can choose to protest. Like Moro’s rule, they become visible to the security forces
and are more likely to be arrested or killed when they protest.

Activists and nonviolent civilians choose to protest when the number of activists and nonvi-
olent civilians (excluding themselves) in their neighborhood exceeds a threshold parameter
called nNV.

number of activists not in jail + number of nonviolent civilians > protest threshold

n(ll‘t Jr n?lVC > nNV

When the equation is satisfied, the agent begins to protest and their protest cycle begins.
The protest cycle is the number of time steps determined by the variable Protest Cycle, which
prevents agents from being in continuous protest. Agents protest for the number of time steps
equal to the parameter Protest Duration, and then they do not protest for the remainder of the
cycle, but their presence emboldens others to protest. When the cycle is complete, activists and
nonviolent civilians protest again. If a nonviolent civilian is not committed and there are not
enough nearby protesting agents, they become an ordinary civilian again and do not resume
protesting, but can be activated again in future time steps. When a person leaves the resistance,
the protest cycle resets. Consequently, it is possible that by leaving and rejoining the resistance
frequently, they may end up protesting even more.

The Percent Immediate Protest parameter relates to the order of rules followed by an agent,
as it determines how many civilians protest immediately. If a civilian protests immediately,
they follow Rule NV, which is protesting, after Rule C, which is deciding to join the resistance.
A civilian that does not protest immediately might become nonviolent on one turn, and then
they will protest the subsequent turn. That said, they may be arrested before the second turn
occurs or the situation in the agent’s neighborhood might change, such that they are no longer
influenced to protest.

Rule D: Defection of pillars and policemen. A policeman or pillar defects to the nonvio-
lent resistance when the following is true in their neighborhood:

number of protestors

number of agents > defection threshold

n
2> gt

a
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Each pillar has their own randomly assigned defection threshold, which is determined by
the model parameters Defection Threshold as the mean value and Defection Threshold St Dev
as the standard deviation. Most runs of the model have Defection Threshold St Dev set to zero.
Once a pillar or policeman defects, they remain in defection.

Rule P: Policemen arrest or kill. This rule first checks if a policeman has defected. If so,
they do not attempt to arrest or kill activists or nonviolent protestors.

Next, the policeman decides if he will target anyone. A random number is generated
between 0 and 100, and if it is less than the parameter Chance Target Nonviolent, then the
policeman will attempt to kill or arrest the nonviolent civilian or activist.

If there is a visible protestor, the policeman will target the protestor. If not, another random
number is generated. If it is less than the parameter Chance Find Nonviolent, the policeman
can target an activist or nonviolent civilian.

When targeting an individual, another random number is generated and compared to the
parameter, Chance Kill Nonviolent. If the number is less than the threshold, the person is
killed. If higher, they are arrested. Unlike Moro’s model [12], there is no policeman-precision
parameter that determines the possibility of successfully killing. As the protesters are unarmed
and in public, it is assumed the security forces always succeed in killing or arresting when they
attempt to do so.

A crucial aspect of the model is that whenever a nonviolent civilian or activist is killed, then
the government legitimacy variable slightly decreases. This is simulating backfire: a common
process in which the public questions the government’s legitimacy in the aftermath of an atroc-
ity—particularly when the police kill an unarmed activist [28-35]. It also aligns with the notion
that governments that must resort to force to restore order demonstrate that they have less
legitimacy than governments that compel the voluntary obedience of the population. Hence:

New government legitimacy = backfire coefficient * government legitimacy

GL,,,6 =BCx*GL,,..

The backfire coefficient is equal to 0.99 in the models run for this paper, decreasing govern-
ment legitimacy in the aftermath of a killing.

When an agent is arrested, they are assigned a jail time between 0 and the parameter, Max
Jail Time. For these time steps, they cannot move, protest, or influence other agents to become
nonviolent.

Rule M: Movement. All agents, except support pillars and those in jail, can move to an
open spot in their visible neighborhood as determined by their vision parameter. This is
unchanged from Epstein’s work [11], and it allows for changing neighborhoods.

As described in the Results section, we added a strategy component for the activists in
which they purposefully move closer to pillars. If the model parameter named Pillar Prox Strat-
egy equals 0, they randomly move like the other agents. If Pillar Prox Strategy equals 1, they
move as close as possible to a regime pillar in their neighborhood. If Pillar Prox Strategy equals
2, they look for the pillar with the lowest individual defect threshold in an enlarged vision
neighborhood which is defined by the parameter Activist Search Vision. They move as close as
possible to that more vulnerable pillar, though they can only travel within their neighborhood
each timestep.

Victory conditions. The model runs until a victory condition is achieved for the regime
or the resistance, or until the model reaches a maximum allowable limit determined by the
parameter Max Steps. The victory condition for the regime is the death of all activists, which
assumes victory for the regime; the regime also wins if the model stops running before the
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resistance achieves its victory condition, meaning the status quo remains. Because nonviolent
revolutions succeed by convincing key pillars of the regime’s support to defect, the victory con-
dition for the resistance involves a certain percentage of pillars defecting. In reality, some
defections are typically necessary but insufficient for movements to succeed [6, 7, 36]. Coun-
tries vary in terms of how many pillars are required to defect in order for a movement to suc-
ceed, and in which sectors the crucial pillars reside. For example, in Tunisia in 2010 there were
defections among business and economic elites, labor organizations, professional groups such
as attorneys and medical professionals, and senior security forces, which ultimately led to the
ouster of President Ben Ali in 2011. In the case of Egypt in 2011, the key pillar that defected
was the army, which refused to back Hosni Mubarak against the popular uprising that deposed
him in February 2011.

To approximate this reality and match historical data, the percentage of pillars required to
defect to meet the victory condition is one of the parameters we varied to match historical
data; however, the minimum number of pillars required to defect for victory is 1%, and the
maximum number is 80%. Recall that pillars (and police) defect when they have seen suffi-
ciently large protests in their vicinity, contingent upon their individual defection thresholds
based on their personal loyalty to the regime. We reiterate that we focus on defections because
prior models that require all security forces to be killed for the movement to achieve victory
cannot apply to models of nonviolent revolutions.

Having created the agent-based model, we calibrated model parameters to best match exist-
ing historical data. The data were matched against observations of all primarily nonviolent rev-
olutions worldwide from 1945-2014. These data were drawn from the Nonviolent and Violent
Campaigns and Outcomes (NAVCO) dataset and include all known instances in which there
were at least a thousand observed participants mobilizing through protests, strikes, boycotts,
and other unarmed methods to overthrow an incumbent national leader, constituting 110
cases in all [27]. For the purposes of this study, we exclude territorial resistance campaigns,
such as anti-colonial and secessionist campaigns, which often have different social and spatial
dynamics than anti-government campaigns, as well as campaigns that occurred alongside con-
temporaneous violent campaigns, as the presence of violence could alter the actions of police
and pillars [9, 35]. Moreover, the data exclude social movements with reformist demands,
such as the civil, political, social, or economic rights. As such, the scope of our study is limited
to those campaigns with maximalist, or revolutionary, goals. The historical data include indi-
cators on the peak participation of the campaign, whether security forces defected, and
whether the campaign achieved the overthrow of the incumbent national leader within a year
of peak mobilization [27].

We trained the model on the historical data to gauge model fit as we varied key parameters
in the computational model. This allowed us to attune the parameters to the historical data.
Once we completed this step, we also assessed the degree to which different strategies by activ-
ists and civilians improved model performance over historical outcomes. For details about this
process, see the S1 Appendix.

Results

Our expectation is that a resistance movement that starts relatively small and consists of a

committed core group may increase its chances of success by expanding its numbers rapidly
and consistently. But even when the movement remains small, we expect that the campaigns
can improve their success rates relative to their participation size when they self-consciously
target pillars of support by persuading them to defect or by disrupting their day-to-day lives.
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We also expect that their success in achieving substantial defections increases if they have
access to information that a particular pillar’s loyalty to the regime is wavering.

The methods section shows the results of the training process, presenting the results from
Model 1 also entitled "Initial Optimization." The parameters for Model 1 were optimized
based on an evolutionary algorithm. To better fit historical data, the Defect Threshold and
Nonviolent Success Percent were varied run to run, resulting in Model 2, entitled "Baseline."
The following results are based on described variations to Model 2. Though every set of runs
of the model produces slightly different results due to the stochastic nature of agent-based
modeling, previous and subsequent sets of runs provide confidence that the presented case in
the following plots are typical. Parameter values for all models are reported in S2 Table.

Exploring a strategy to quickly mobilize recruits

Having established a baseline model, we next explore potential resistance strategies by modify-
ing variables, starting with the parameter Percent Immediate Protest. Increasing this value
results in more civilians protesting immediately once they decide to join the nonviolent resis-
tance. While this might reflect different protest proclivities among individuals, it could also
flow from a strategy in which resistance leadership encourages immediate action from
bystanders. Fig 2 shows that increasing the Percent Immediate Protest increases both the
mean peak protest size as well as the probability of success:

When a turn takes place between joining the nonviolent resistance and protesting, it is pos-
sible that the agent might not protest, which in turn slows the momentum of other civilians
joining and protesting. Hence, it follows that a higher Percent Immediate Protest would lead
to larger protest sizes and increased success, as shown in Fig 2.

While it clearly improves the overall likelihood of success, Percent Immediate Protest also
affects the likelihood of success as a function of maximum protest size. (As discussed in the
Appendix, the x-axis in Fig 3 and other figures shows the common logarithm—or logarithm
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Fig 2. Participation and success increase with Percent Immediate Protest. Note: data points labeled with Percent
Immediate Protest.
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with base 10—of the percent of peak participation, as opposed to the natural logarithm). For
example, the likelihood of success is improved more when the peak participation is around 1%
(log10 = 0) as compared to 0.1% (logl0 = -1). This trend is intuitive as it also follows that this
will only have its effect when the victory is dependent on a larger number of nonviolent civil-
ians. When the peak participation is low, the outcome does not depend on whether a broad
base of civilians mobilizes on behalf of the resistance. Either the activists succeed or not in
causing pillar defection. When the peak participation is larger, then many civilians must have
joined, so a parameter affecting the civilians can change the model outcome. This parameter
increases the slope of the logistic regression; there are similar success levels for low protest size
but more success for large protest size.

Exploring a strategy of maintaining committed followers

As we swept the parameter Percent Immediate Protest, we also varied Percent Committed. When
the parameter is set to 0, then none of the nonviolent civilians are committed, meaning that they
cease to be part of the resistance when they do not see other agents protesting in their neighbor-
hood. If they are not part of the resistance, they do not influence other civilians to protest.

While Percent Committed describes civilians’ level of commitment, it could be influenced
by movements strategies. If resistance leaders kept their members active in influencing others
even when they are not protesting, this would correspond to a higher value for Percent Com-
mitted. In Figs 4 and 5, we plot the effect of the parameter on peak participation, total number
of successes, and probability of success for a given peak participation.

Though greater Percent Committed generally produces greater peak participation and
probability of success, the increase is modest. This means that a greater Percent Committed
might occasionally produce a lower mean peak participation, or a lower mean peak participa-
tion may correspond to a slightly greater probability of success. This is because the simulations
depend on many randomly generated values. For example, though the probability of success
for 100% Committed is higher despite the lower mean of peak participation, the 95%
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Fig 4. Participation and success mostly increase as percent committed increases. Note: data points labeled with
Percent Committed.
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confidence intervals overlap. Again, we see that the use of a strategy focused on maintaining
the mobilizing influence of former protestors modestly increases participation and therefore
the likelihood of success. But it does not increase the probability of success when few people
join the resistance.
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Fig 5. Probability of success at a given peak participation with varying percent committed.
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Exploring two strategies focused on pillars

We have established that resistance strategies focused on recruits increase the likelihood of
success in general, but not when the resistance is small. Consequently, we introduce two strate-
gies focused on pillars in which activists focus on moving close to pillars in order to protest
near pillars. Both strategies have two compounding effects. First, the activists themselves influ-
ence the pillars to defect. Second, the activists influence the civilians near the pillars to protest
as well, which further influences the pillars.

These strategies are explained in the Methods section, but in short, they are as follows:

« When Pillar Proximity Strategy = 1, activists move to the nearest pillar (Fig 6).

« When Pillar Proximity Strategy = 2, activists move to the pillar with the lowest defect thresh-
old in their expanded vision region (Fig 7).

Modified graphs display the activist and pillar agents for clarity.

Fig 8 compares the probability of success for Pillar Proximity Strategies 1 and 2 against
activists moving randomly, without a strategy with regard to pillars (Pillar Proximity Strat-
egy = 0). As Pillar Proximity Strategy 2 requires individual pillars to have varying defect
thresholds, Fig 8 includes varied individual defect thresholds as defined by the parameter
named Defect Threshold Std Dev.

The average success probability is 48% for no strategy, and 68% and 88% for strategies 1
and 2, respectively. In other words, these pillar proximity strategies clearly increase the proba-
bility of success. But the most notable implication is that they also increase the probability of
success when the peak participation is very low. Indeed, the most significant improvement in
the probability of success is seen when the peak participation is only 0.1% (logl0 = -1). Under
these conditions, the probability increases from approximately 20% to 50% and 85% for strate-
gies 1 and 2, respectively. In other words, even when a small, committed group of activists are
unable to recruit large portions of the populace to their cause, they greatly increase their proba-
bility of success by focusing on the pillars of regime support. Furthermore, when the peak
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Fig 6. Activists using Pillar Prox strategy = 1 (Moving to the nearest pillar).
https://doi.org/10.1371/journal.pone.0269976.g006
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Fig 7. Activists using Pillar Prox strategy = 2 (Moving to the pillar with the lowest defect threshold).
https://doi.org/10.1371/journal.pone.0269976.9007

participation is sufficiently large, then the pillar strategies have little to no effect. People are
protesting in enough places such that focusing on pillar locations is not needed.

Discussion

Our study calibrated a dynamic agent-based model to historical data, which allowed us to
develop a model that could assess the impacts of movement strategies on movement outcomes.
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Fig 8. Comparing probability of success for Pillar Proximity Strategies.
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We explored three strategies. The first focused on rapid mobilization, and the second focused
on maintaining recruitment activity of nonviolent civilians. Both increased peak participation
and movement success for larger campaigns, but these strategies do not increase the probabil-
ity of success for movements that remain small. But the third strategy—which activates protest
in proximity to key pillars and, alternatively, can deploy intelligence about which pillars are
the most likely to defect—makes even smaller campaigns more likely to succeed than cam-
paigns that grew very large in size without implementing such a strategy. This finding allows
us to explain how and why some smaller resistance movements are able to succeed by deliber-
ately incorporating efforts to dislocate the regime from its pillars of support, even where larger
movements without such strategies fail.

There are a few theoretical and practical limitations to the current study. First, the scope of
the study is limited to anti-government campaigns in which we assume an equal degree of
social distance between agents throughout the model, and in which protestors face active gov-
ernment repression. Current research suggests that key pillars are less likely to defect—and
movements are less likely to succeed—when there is a high degree of social distance between
the resistance and the regime [37]. This could emanate from, for example, racial, ethnic, class,
caste, and/or gender differences between protesters and police, and may be particularly
pointed in highly unequal or hierarchical settings. Less repressive regimes, or regimes who
repress unevenly across groups, may not face the same backfire effect captured in the model.
Moreover, some regimes may actively try to prevent defections from different pillars, using
various social or financial inducements; such strategies may help to explain variations in the
model’s fitness to the historical data. Future extensions of the model could attempt to account
for these strategies as well.

Second, the study assumes that government legitimacy decreases with police killings. There
may be important caveats to this assumption. For instance, government legitimacy may only
decrease among those most proximate to it (e.g. within the neighborhood of the killing), or
among those with shared identities as the victim. Alternatively, the population could react to
police killings in a polarized way, with police killings increasing perceived legitimacy among
some segments of the population (e.g. regime loyalists or those belonging to a different social
identity group than the protesters), while decreasing it in others [38]. Studies that extend this
model could explore these potential variations by altering model parameters regarding govern-
ment legitimacy.

Third, the only resistance tactic available to the agents in the model is protest, though it is
likely that different tactics would have varied effects on pillars. For example, an economic or
business pillar might be more persuaded by a boycott action than a protest. In this way, the
neighborhood of the pillar does not represent a geographic region but symbolizes the sphere of
society that matters to them. Further research could assess the effects of different resistance
tactics on various pillars using more fine-grained historical data.

Fourth, further research could explore how pillars interact with one another, as well as which
pillars might be more influential in creating defection cascades. For instance, instead of basing
the nonviolent victory condition on the number of pillars defecting, an agent-based model
could instead weight each pillar with a different number of points. This would approximate the
reality that there are key sources of social and political power in society—for instance, business
elites and security forces have an unequal impact on the outcome depending on the country
and regime type. Adding this complexity means that the model would not need to vary victory
conditions from run to run, as it could instead vary pillar attributes from run to run.

Our study nevertheless provides important new information about the efficacy of mass
mobilization and strategic nonviolent action. Because previous literature has emphasized that
the likelihood of success largely depends on the size of the resistance movement, activists
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might focus all their effort on growing their membership and increasing participation in non-
violent action. But our agent-based model points to key factors about the regime that signifi-
cantly influence movement success. Specifically, it matters how close to defection the regime’s
support system is. If a few pillars are close to defection and could easily sway the others, then
the activists can achieve success even at small participation sizes. If the pillars are very commit-
ted to the regime, then the activists have a much harder task ahead of them. Here, the model
shows that motivating people to protest immediately may be as important as garnering sus-
tained commitment.

At the same time, the model results point to a way that the activists can exercise their own
agency, even when the regimes support pillars are not initially inclined towards defection. Our
results encourage resistance leaders to evaluate who the most important pillars of society are;
how likely they are to defect; and whether they have divided loyalties. The more information the
resistance has on the latter, the more likely they can apply the lessons from Pillar Proximity Strat-
egy 2. While Pillar Proximity Strategy 2 (i.e. focus efforts on pillars most likely to defect) yields
the greatest success, it is also unrealistic without credible intelligence about the pillar’s loyalties.

These findings therefore point to two crucial capacities for successful movements in repres-
sive regimes. First, the ability to organize and coordinate a viable resistance strategy—particu-
larly one that is oriented toward eliciting defections—may help movements to succeed.
Second, the ability to gather credible information about particular pillars’ propensity to defect
may allow the movement to use the most effective strategy available, which is coordinated
resistance toward wavering pillars. More generally, movements with more centralized infor-
mational structures may be more likely to succeed than leaderless movements, which may
excel at mobilizing mass participation but fall short when it comes to coordinating a clear
strategy and processing intelligence. In some instances, the general public might have signifi-
cant amounts of information regarding the pillars, their likelihood of defection, what could
influence them, and which are the most influential. These are often called “leaderful” move-
ments. If transnational activists and solidarity networks want to support nonviolent cam-
paigns, research and information-gathering on the political and economic values of key pillars
could be a fruitful avenue of support.
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